EXTENDING GWORKFLOWDL: A MULTI-PURPOSE
LANGUAGE FOR WORKFLOW ENACTMENT

Simone Pellegrini, Francesco Giacomini
INFN Cnaf

Viale Berti Pichat, 6/2 - 40127 Bologna, Italy
simone.pellegrini@cnaf.infn.it
francesco.giacomini@cnaf.infn.it

Abstract Scientific workflows are becoming increasingly important as a vehicle for en-
abling science at a large scale. Lately, many Workflow Management Systems
(WEMSs) have been introduced in order to support the needs of several scien-
tific fields, such as bioinformatics and cheminformatics. However, no platform
is practically capable to address the computational power and storage capacity
provided by production Grids needed by complex scientific processes. In this
paper, we introduce a novel design for a WfMS which has been proposed in-
side the CoreGRID project. Based on the micro-kernel design pattern, we have
developed a lightweight Petri Net engine where complex functionalities — such
as the interaction towards Grid middlewares — are provided at higher-level and
described by means of Petri Net-based workflows. As the interaction with re-
sources is described by workflows, it is possible to extend our platform by pro-
gramming it using the Grid Workflow Description Language (GWorkflowDL).

Keywords: Grid Workflow, Workflow Enactment, Workflow Description Languages, Lan-
guage Conversions, Petri Nets, GWorkflowDL, gLite, Sub-Workflows, Web Ser-
vices

1. Introduction

Workflows are a modern phenomenon which, in the 1920, have been ap-
plied to the manufacturing industry for rationalizing the organization of work.
Less than a decade ago, those concepts have been applied to the Information
Technology (IT) world. Commonly, workflows are used to describe business
processes, which consist of the flow or progression of activities — each of which
represents the work of a person, an internal system, or the process of a part-
ner company — toward some business goal. A Workflow Management Sys-
tem (WEMS) is a software component that takes as input a formal description
of processes and maintains the state of processes executions, thereby delegat-

2

ing activities amongst people and applications. Recently, workflows have also
emerged as a paradigm for representing and managing complex distributed
scientific computation, specially in the fields of bioinformatics and cheminfor-
matics.

Actually, many of the motivations of scientific workflows are also typical
in business workflows. However, according to [1], it is possible to identify
scientific workflow specific requirements such as data and computation in-
tensity and dynamic resource allocation, scheduling and mapping to under-
lying distributed infrastructure such as Grid computing environments. While
in business workflows the attention is indeed mainly placed in defining the
control-flow (control-driven), in the scientific environment the data-flow defi-
nitely covers the principal role (data-driven) of the process design. This aspect
also reflects in the workflow description languages and the underlying mod-
eling formalisms. While scientific workflows are mainly based on Directed
Acyclic Graphs (DAGs) the business workflows are modeled by means of the
mw-Calculus [2] and Activity Diagrams [3] formalisms.

Unfortunately, today, most of scientific WfMSs are not practically able to
deal with complex and highly demanding processes. Many of them can ad-
dress just a small set of computational resources and therefore they are not
able to exploit real production Grids, which provide the computational power
and storage capacity needed by complex scientific processes. Furthermore, a
standard for workflow description has not been established yet and the variety
of existing workflow languages intend to be specific to a platform limiting the
interoperability of the workflow descriptions.

For these reasons, interoperability is becoming one of the main issues in the
next-generation WfMSs and the CoreGRID project is taking large efforts in
this direction. Inside the CoreGRID project, the FIRST Fraunhofer research
group has proposed a workflow language, called the Grid Workflow Descrip-
tion Language (GWorkflowDL) which is based on the High Level Petri Nets
(HLPNs) formalism [4]. The Petri Nets formalism has been chosen for sev-
eral reasons [5] [6], and its semantics fits well with the majority of scientific
processes. Furthermore, the expressivity of Petri Nets makes interoperability
possible by theorically allowing the translation of the majority of scientific
workflow descriptions — usually expressed in terms of DAGs — into a Petri
Net-based description such as GWorkflowDL.

In this paper a novel WEMS architecture developed within the CoreGRID
project is presented [7]. The characteristic of the system relies on its unique
design which is based on the micro-kernel design pattern [8] [10] [9]. The
purpose is to develop a lightweight, fast and reliable Petri Net-based engine
with the ability to perform just few types of operations: local method calls,
remote Web Service and sub-workflows invocation [11]. The main idea behind
the WEMS is that ‘everything is a workflow’ and therefore complex processes —

Extending GWorkflowDL: a Multi-Purpose Language for Workflow Enactment 3

e.g. the execution of a job on a Grid environment — can be modeled by means
of a workflow whose atomic tasks can be executed by the engine. The GWork-
flowDL language has been improved in order to make it more expressive and
deal with the sub-workflows invocation mechanism which, as we will see in
Section 3, covers an important role in the workflow enactment process. Un-
like other approaches, the presented design guarantees the neutrality towards
the underlying mechanisms for task execution, in order not to compromise in-
teroperability with multiple infrastructures and resources. In order to evaluate
the capabilities of our design, tests have been done with workflows accessing
resources available on the Grid provided by the EGEE project, a large and
relatively mature infrastructure.

Section 2 introduces the GWorkflowDL language and the extensions intro-
duced in order to make it more expressive and suitable for the internal rep-
resentation of sub-workflows in our WIMS. In Section 3 an overview of the
system will be presented. In Section 4 the language interoperability problem
will be faced by introducing language translators. Section 5 presents how this
work will progress in the future.

2. The Grid Workflow Description Language

The power of workflows relies in their graph-oriented programming model
which is appealing for average users. In these years many formalisms have
been considered for workflow modeling (DAGs, UML Activity Diagrams) and
today, we see Petri Nets and 7m-Calculus as the main formalisms respectively
for data-driven and control-driven workflows. Actually, m-Calculus is the for-
malism on which the Business Process Execution Language for Web Services
(BPEL4WS) is based. BPEL4WS is a de facto standard for business work-
flows created by merging two workflow languages previously proposed by
IBM (WSFL) and Microsoft (XLANG) [12]. On the other side, Petri Net-
based workflow languages have not been yet standardized, but projects such as
Yet Another Workflow Language (YAWL) [13] and the Grid Workflow Execu-
tion Service (GWES) [14] are demonstrating that Petri Nets can be used either
to address the needs of business workflows as well as scientific ones.

The GWorkflowDL has been proposed by the FIRST Fraunhofer research
group inside the CoreGRID project. Its main purpose is to define a standard
for the description of Petri Net-based scientific workflows. It is formally based
on the HLPN formalism and used in the Knowledge-based Workflow System
for Grid Applications K-WTf and actually in its core component represented
by the GWES. It is an XML-based language for representing Grid workflows
which consists of two parts: (i) a generic part, used to define the structure of
the workflow, reflecting the data and control flow in the application, and (if) a

b1
@\ .
" —QO
b2
@2 sum

Figure 1. A two-operands sum operation modelled as a HLPN-based workflow

<workflow xmlns:op="http://www.gridworkflow.org/gworkflowdl/operation">
<place ID="pl">
<token><data><tl xsd:type="xsd:int">3</t1></data></token>
</place>
<place ID="p2">
<token><data><t2 xsd:type="xsd:int">2</t2></data></token>
</place>
<place ID="q" />
<transition ID="T">
<inputPlace placeID="pl" edgeExpression="al"/>
<inputPlace placeID="p2" edgeExpression="a2"/>
<outputPlace placeID="q" edgeExpression="b"/>
<op:operation>
<op:operationClass name="plus"/>
</op:operation>
</transition>
</workflow>

Figure 2. GWorkflowDL abstract description of the Petri Net in Figure 1

middleware-specific part (extensions) that defines how the workflow should be
executed in the context of a specific Grid computing middleware.

Recently [15], the language has been extended in order to represent platform-
independent operations and therefore to make the workflow descriptions portable
upon different WfMSs. Considering the workflow, expressed in HLPN, in fig-
ure 1, the abstract workflow can be expressed in GWorkflowDL as depicted in
figure 2. At the abstract level, the structure of the Petri Net is fully described
while operations — which are associated with transitions — are not specified.
In figure 3, two concrete, platform-specific, implementation of the sum opera-
tion are provided. The sum operation is mapped (by the WEMS) into: (i) the
invocation of a Web Service method and (ii) the execution of a local script.

In order to make the GWorkflowDL language compliant with our purposes
and with the formal definition of HLPNs, it has been extended with several

Extending GWorkflowDL: a Multi-Purpose Language for Workflow Enactment 5

<op:operationClass name="plus">
<op:wsOperation wsdl="http://localhost/math?wsdl"
operationName="plus" quality="0.6"/>
<op:pyOperation operation="b = al + a2"
selected="true" quality="0.3"/>
</op:operationClass>

Figure 3. 'Two concrete, platform-specific, implementations of the sum operation.

features. In the following sections, three extensions will be introduced with the
main purpose to increase the GWorkflowDL language modeling capabilities
and to introduce the mechanisms (e.g. the sub-workflows invocation) used by
the WEMS during the workflow enactment process.

Sub-workflows

Real workflows have the tendency to become too large and complex, for
this reason the hierarchy construct has been provided in order to reduce the
overall complexity by structuring into sub-workflows. The sub-workflow con-
cept allows for hierarchical modelling, i.e. it is possible to decompose com-
plex systems into smaller systems allowing workflow reuse. A sub-workflow
(also called system) is an aggregate of places, transitions and (possibly) sub-
systems. A sub-system, as happens with software components, defines an in-
terface which is composed by a set of places, also called connectors. These
connectors are divided into two categories, the input connectors (where tokens
may enter into the system) and output connectors (where tokens may leave the
system). The principle is very similar to the method invocation mechanism
provided by common programming languages, where a piece of code can be
packed into a method which exposes a signature.

In order to add support for sub-workflows in the GWorkflowDL language,
we have introduced the swOperation element. For example, consider the
workflow in Figure 4, its semantics is to sum the three numbers coming from
the input places in1, ing, in3 (which are the input connectors) and returns the
result in the output place out (which is the output connector). The mapping
between incoming/outgoing edges and input/output connectors can be implicit
or explicit. The former uses a positional semantics, the N input places of
the transition are mapped with the first V ([0, N]) places defined in the sub-
workflow, while the M output places are mapped with the next M places ([N +
1, N+ M]). The latter one uses the optional in and out XML elements in order
to make the mapping explicit as discussed in [15].

mny out
O —(
19

insg is sum

Figure 4. An abstract workflow which sums three infeger numbers.

<transition ID="T">
<inputPlace placeID="pl" edgeExpression="al"/>
<inputPlace placeID="p2" edgeExpression="a2"/>
<outputPlace placeID="q" edgeExpression="b"/>
<operation>
<op:operationClass name="plus">
<op:swOperation wsdl="http://localhost/math?wsdl"
operationName="plus" quality="0.6">
<in name="ini">al</in>
<in name="in2">a2</in>
<in name="in3">0</in>
<out name="out">q</out>
</op:swlperation>
</op:operationClass>
</operation>
</transition>

Figure 5. Explicit invocation of the sub-workflow depicted in Figure 4.

The invocation of such workflow is performed by using the swOperation.
In the Figure 5 a concrete implementation of the sum operation via a sub-
workflow is showed. In this case the optional XML elements in and out are
used in order to map incoming edge variables to input connectors and outgoing
edges variables to output connectors. The invocation of the sub-workflow is
then managed by the engine in a platform specific way.

Place with Type

According to the Coloured Petri Nets formalism [16], tokens and also places
have a type (also called color). Currently, the GWorkflowDL language allows

Extending GWorkflowDL: a Multi-Purpose Language for Workflow Enactment 7

to specify type constraints for the tokens but not for the places. Add typing
information to the places allows to check, even at compile-time, type safety of
a Petri Net. For this reason, we have introduced an XML attribute — type — to
the place element schema.

Typing information are also useful in order to check the compatibility of a
transition operation with the relative incoming and outgoing places. For ex-
ample consider the workflow in Figure 1 where places pl, p2 and ¢ are of
integer type; these constraints make the signature of the sum operation clear,
i.e. int sum(int, int). This feature avoids possible type casting errors which
could raise at runtime and also helps the mapping from abstract to concrete
workflow process by providing information of the operation signature.

Timed Transitions

In Timed Petri Nets, a time duration can be assigned to the transitions; to-
kens are meant to spend that time as reserved in the input places of the cor-
responding transitions. The GWorkflowDL language is currently not able to
represent timed transitions and we think this feature is useful in order to make
workflows deal with several design patterns which involve a delay, such as
polling. Timed transitions can be supported at language level by introducing
an optional XML attribute — delay — in the transition element. The delay
is an integer value expressed in seconds.

3. The WEMS Overview

In order to evaluate the proposed language extensions and to demonstrate
the capabilities of our design, we have developed a WfMS from the scratch.
The project focuses the attention on different aspects of workflow manage-
ment: (i) the execution of Petri Net-based workflows, the (ii) mapping from an
abstract to a concrete workflow and the (iii) conversion between workflow de-
scription languages. The enactment of a workflow is performed by the engine
which is the core of a WfMS and responsible of executing the workflow tasks
respecting their dependencies. The second aspect is pursued by a refinement
process which is based on the sub-workflow invocation mechanism. As stated,
abstract workflows simply define the dependencies and the flow of data among
macro-activities; the way in which tasks are performed is transparent to users
and is managed by the WEMS. In our implementation, these macro-activities
are implemented by concrete workflows which use primitives provided by the
underlying platform. Interoperability is made possible by means of transla-
tors. Workflow language conversion will be discussed in more detail in the
next section.

Tests have done with workflows accessing resources available on the Grid
provided by the EGEE project, a large and relatively mature infrastructure.

— / Concrete Workflow \

Abstract
Workflow

| |

| |

| ® |

| job-exec E@
| |

O O

- -

WS-I: jobRegister Local: moveData

[fails]

WS-l: jobStart

[Hails |

SubW: wait for termination

Local: refrieveResults

executed

Petri Net
engine

WMS WS-

i i Operations [l Workflows
Service 1 j Service N

gLite middleware
WS-l WS-I

Figure 6. The WIMS architecture overview.

In particular, the execution of Grid jobs is performed by relying on the gLite
Workload Management System (WMS) [17] through its Web Service interface
(WMProxy). The WMS takes care of the resource management in glite by
finding the best available resources considering a set of users requirements and
preferences (such as CPU architecture, OS, current load).

3.1 The Workflow Engine

The engine of a WEMS is the component which has, among others, the re-
sponsibility to interact with the underlying resources. Commonly, the support
toward a specific resource or a Grid middleware is hard-coded into the work-
flow engine itself making the interaction with new platforms very difficult.
Many of the existing WfMSs are designed to address just specific resources
or Grid infrastructure and this choice also reflects in the associated workflow
language which — instead to be unaware of the implementation details — risks
to become too bound to a platform. This kind of design limits both the capa-

Extending GWorkflowDL: a Multi-Purpose Language for Workflow Enactment 9

bilities of the WfMSs and the portability of the workflow descriptions making
their reuse impossible.

An alternative approach is to design a lightweight engine based on the micro-
kernel design pattern [8] [10]. The engine is able to execute efficiently Petri
Nets where the operations associated with transitions are of few, well defined,
types. As depicted in Figure 6, the interaction with arbitrary Web Services,
the execution of local methods and the invocation of sub-workflows are the
only concrete operations supported by the engine and also provided at GWork-
flowDL language level (see previous Section). New functionalities are pro-
vided at higher level through sub-workflows. This makes the GWorkflowDL,
and thus Petri Nets, the main programming language of our platform.

The engine internally keeps the HLPN model of a workflow and executes
it according to the Petri Nets semantics. The implementation of such seman-
tics, and in particular the non-determinism, faces with the imperative paradigm
provided by the mainstream programming languages such as C/C++ and Java.
In [11], the engine design details are discussed together with the problems of
sub-workflow invocations, non-determinism, parallelism, and transition firing
which are practically faced and efficiently solved.

3.2 The Refinement Process

As happens with programming languages, where new functionalities are
provided through /libraries, in our WfMS new functionalities can be provided
by defining new workflows which are accessed using the sub-workflow in-
vocation mechanism. The mapping from abstract operations onto a concrete
implementation is currently established by the correspondence of the operation
name and the sub-workflow name. The overview of the refinement process is
depicted in Figure 6 where the execution of a job in a Grid environment is
implemented by a sub-workflow able to interact with the EGEE/gLite middle-
ware services. Interaction with a different Grid platform, e.g. UNICORE, can
be provided — even at runtime — simply by defining a new sub-workflow which
describes the job submission and job monitoring processes.

Despite its simplicity, this strategy cannot be considered to be multi-purpose
as far as a name-to-name mapping could fail in many situations. As stated, the
mapping of an abstract operation f onto a concrete workflow implementing
f is done by the WfMS using an associative map which binds the f’s name
into a workflow definition. In those situations, where an operation has several
implementations, this strategy cannot be exploited. For the future, in order to
improve the refinement process and make it more flexible, we are investigating
the possibility to use ontologies.

Furthermore, thanks to the adopted design the engine has no information
about the state of the workflow. As far as all the macro-operations of a work-

10

flow are decomposed into sub-workflows which use afomic operations (i.e. a
local method or a remote Web Service invocation), it is possible to represent
the overall workflow state simply by using the Petri Net marking. In this way,
it is possible to provide a checkpointing mechanism able to restore the execu-
tion of a workflow, after a system failure, just re-establishing the last marking
of the net.

4. Language Translators

One of the main interests of the CoreGRID project is the interoperability
among heterogeneous systems. The growing number of WfMSs and workflow
languages is making interoperability one of the main issues in the workflow
environment. In a WfMS, interoperability can be achieved at different levels
of complexity. The simpler one is about the description languages and the
possibility to run legacy workflows on different platforms; it can be achieved —
under certain circumstances — by means of language translators. On the other
side, the interoperability among WfMSs is more complex to achieve as far as
no recognized standard exists and no platform exposes a clear interface.

In our activity, we have focused on the language conversion problem en-
abling our WIMS to execute legacy workflows written in the JDL and the
SCUFL languages. The Job Description Language (JDL) is used in the glLite
middleware for job description. It is based on Condor’s Classified Advertise-
ments (ClassAds) and allows the description of DAG-based workflows which
are executed by DAGMan [22]. The Simple Conceptual Unified Flow Lan-
guage (SCUFL) is the underlying language of the Taverna WfMS [23]. Scufl
is widely used in bioinformatics and several primitive operations are provided
at language level in order to interact with biological-specific services such as
biomoby [20].

In this section we introduce two language translators able to convert DAG-
Man and Taverna workflows into GWorkflowDL descriptions. Our efforts
proves the power of Petri Nets in describing workflows. Recent studies have
indeed demonstrated that the modeling capabilities of Petri Nets outperform
other formalisms in describing workflows [18]. Actually, it is also possible to
convert workflows based on several formalisms in terms of Petri Nets making
language interoperability possible. We choose GWorkflowDL as description
language because it has been proposed inside the CoreGRID project and addi-
tionally we think it has the characteristics to become a standard for scientific
processes description.

4.1 JDL to GWorkflowDL

DAGMan [22] acts as a meta-scheduler for Condor jobs submitting job re-
specting their inter-dependencies which are expressed as a Directed Acyclic

Extending GWorkflowDL: a Multi-Purpose Language for Workflow Enactment 11

Figure 7. A simple DAG workflow.

Graph. In case of job failure, DAGMan continues until it can no longer make
progress. The example of a DAG-based workflow is showed in the Figure 7.
While nodeA and nodeB can be executed concurrently, nodeC must wait the
termination of nodeB and nodeD can be executed only when nodeA and nodeC
have been completed. However, DAGMan totally lacks control structures (such
as branches and loops) and a customizable error handling; the default strategy
after a node failure is the re-execution of the node up to a configurable number
of times.

The Job Description Language (JDL) is an extension of the Condor’s Clas-
sified Advertisements (ClassAds): a record-like structure composed of a finite
number of attributes separated by semi-colons (;). It is used in the gLite mid-
dleware for describing Grid jobs. A workflow in JDL is defined by a set of
nodes and a set of dependencies which define precedence relations between
nodes. The conversion of a DAG to a Petri Net is quite trivial: a DAG node
can be modeled by a Petri Net transition and the flow of data among nodes by
using tokens. However, a DAG node represents the execution of a Grid job
and that practically means (i) the submission of the job description, (ii) the
transfer of its input files (also called the input sandbox), (iii) waiting for the
job termination and (iv) the retrievement of the results (the output sandbox).
As stated in the previous section, the sequence of these operations can be mod-
eled via a workflow and each DAG node can be substituted by a sub-workflow
invocation. The Figure 8 depicts the Petri Net-based concrete workflow result-
ing from the conversion of the DAG represented in Figure 7. In the workflow
are visible some implementation details (certificate and delegationId)
which are specific to the gLite Grid middleware.

4.2 Scufl to GWorkflowDL

Scufl is an XML-based language which allows to model DAG-based work-
flows. As stated, Scufl is the description language used by the Taverna WfMS

12

Delegationld Cert

O O O

delegationld [is_delegated / cert

delegationld_\ cert_

Is_delegated

Delegationfd_out Cet_out
Kiele gationId leert

Rep_delegationld

delegationId

nodeA_delegafionld

delegationld

nod

nodeA_name

odeB_cert NodeB_name

smdbox

nodeA_JDL

nodeA_inputSandbox

delegationld_ out_sandbox out_sandbox{

jcA_delegationld_out ngdeA_output .

nodeB_JDL

delegationld_

bert_ \delegationld_

‘out_sandbox |

delegationd et

nodeA_cert fout

nodeD_outpy

Figure 8.
tion.

nodeD_JDL

O

nodeD_name nodeD_sandbox

sandbox
nodeD

out_sandboxkert_

delegationld_

nodeD_cerf_out odeD_delegationld_out

O O

odeB_delegationld_out

name

node,C,ceES \odeC_delegationld_out

nodeC_JDL

nodeC_name

O O

The result of the conversion of the DAG in Figure 7 into a Petri Net-based descrip-

Extending GWorkflowDL: a Multi-Purpose Language for Workflow Enactment 13

. Workflow Inputs | coord1

condition

tempF_sty
tempC tempF xslt temp C_str
temp
CtoF FtoG
:- \-u'\f;:r-kf-lo-w-du-tp;LEs ----- CtoF_temp FroC_temp
:) A . Fro C_coor:
. | tempF I tempC A\va CtoF_coord

FtoC

@tempC

Figure 9. Conversion of a Scufl workflow (on the left) to a GWorkflowDL Petri Net-based
workflow (on the right) by means of a XSL Translator

and in particular by the FreeFluo engine. Unlike JDL, Scufl allows to define
several control structures which make the language more expressive. In Scufl
several types of nodes exist: processors, sources and sinks. Sources and sinks
represent respectively the input and output nodes of the process, the concept of
computational node is represented by the processor. A processor can be either
(and not limited to) a local operation, a string constant, a generic Web Service
invocation or a sub-workflow execution. Nodes are connected via edges (or
links) which define precedence relations and the data-flow.

Additionally, Scufl allows to model the control-flow by using the coordina-
tion element. Coordination constraints are used to prevent a processor transi-
tioning between states until some constraint condition has been satisfied. An
example is depicted in Figure 9 where the execution of processors tempC and
tempF are respectively subordinated to the result of the Fail_if True and
Fail if False processors. Processors can be also decorated by several prop-
erties which allow to define: the retry behaviour, the alternate processor and
the iteration strategy. The iteration strategy is one of the most powerful feature
in Taverna, and it defines the implicit iteration over the incoming data sets. The
complete Scufl language reference can be found in [21].

As Scufl and GWorkflowDL are XML-based the conversion is made possi-
ble by means of an Extensible Stylesheet Language Transformations (XSLT).
We do not want to go deep into the translation process because this is a work

14

in progress and the converter is still under development. However, we are cur-
rently able to translate simple Scufl workflows which interact with arbitrary
Web Services as depicted in Figure 9. The workflow shows an example of
a conditional execution where the input value of the source node condition
determines the execution of the left branch — when the input value is false —
or the right one, otherwise. The left branch performs a temperature conversion
from Fahrenheit to Celsius using a Web Service, the right one the inverse oper-
ation. The result of the conversion is stored into the corresponding sink node,
tempF or tempC.

The Figure 9 shows how the workflow can be converted into a Petri Net-
based description which keeps the same semantics. However, the majority of
Scufl workflows uses local bindings to the Java platform making the conver-
sion process even more difficult.

5. Conclusions and Future Work

This paper presents an overview of the design of a WfMS developed in
the context of the CoreGRID project. Interaction with multiple resources and
Grid infrastructures is made possible by adopting a novel design based on the
micro-kernel design pattern, which makes the platform extensible by using
sub-workflows. We have also investigated the language interoperability issues
which are made possible by the use, and improvement, of the GWorkflowDL
language. The Turing-complete semantics of GWorkflowDL makes the conver-
sion from other formalisms (such as DAGs and 7-calculus) possible by means
of language translators.

The WEMS is nevertheless still under development and further work is needed
in order to improve it and make it usable in production environments. As
stated, the mapping from abstract to concrete workflow should be improved by
using ontologies and other features — such as planning and advance reserva-
tion — should be investigated in order to make the system more compliant to
the needs of scientific processes.

References

[1] On Scientific Workflow. TCSC Newsletter, IEEE Technical Committee on Scalable Com-
puting, 9(1), 2007.

[2] F. Puhlmannl and M. Weskel. Using the w-Calculus for Formalizing Workflow Patterns.
Lecture Notes in Computer Science, pages 153-168, 2005.

[3] M. Dumas and A. H. M. ter Hofstede. UML Activity Diagrams as a Workflow Specifica-
tion Language. Lecture Notes in Computer Science, pages 76-90, 2001.

[4] A. Hoheisel and U. Der. An XML-based framework for loosely coupled applications
on grid environments. In P. Sloot, editor, /CCS 2003, number 2657 in Lecture Notes in
Computer Science, pages 245-254. Springer-Verlag, 2003.

Extending GWorkflowDL: a Multi-Purpose Language for Workflow Enactment 15

[5] M. Altetal. Using High Level Petri-Nets for Describing and Analysing Hierarchical Grid
Workflows. In Proceedings of the CoreGRID Integration Workshop 2005, Pisa, 2005.

[6] W. Aalst. Three Good reasons for Using a Petri-net-based Workflow Management Sys-
tem. In Proceedings of the International Working Conference on Information and Process
Integration in Enterprises (IPIC’96), pages 179-201, Camebridge, Massachusetts, 1996.

[71 CppWIMS, http://wfms.forge.cnaf.infn.it/

[8] Douglas Schmidt et al.: Pattern-Oriented Software Architecture, Siemens AG, pages
171-192, 2000.

[9] S. Pellegrini et al. A Practical Approach to a Workflow Management System. Proceed-
ings of the CoreGRID Workshop 2007, Dresden, Germany, 2007

[10] Dragos A. Manolescu: An extensible Workflow Architecture with Object and Patterns,
TOOLSEE 2001.

[11] S. Pellegrini, F. Giacomini Design of a Petri Net-Based Workflow Engine. In Proceedings
of the 3rd International Workshop on Workflow Management and Applications in Grid
Environments (WaGe0S8), Kunming, China, 2008.

[12] T. Andrews et al. Business process execution language for web services version 1.1.
Technical report, BEA Systems, IBM, Microsoft, SAP AG and Siebel Systems, 2003.

[13] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: yet another workflow language.
Inf. Syst., 30(4):245-275, 2005.

[14] A. Hoheisel. Grid Workflow Execution Service — Dynamic and Interactive Execution and
Visualization of Distributed Workflows. In Proceedings of the Cracow Grid Workshop
2006, Cracow, Poland, 2007

[15] S. Pellegrini, A. Hoheisel et al. Using GWorkflowDL for Middleware-Independent Mod-
eling and Enactment of Workflows. In Proceedings of the CoreGRID Integration Work-
shop 2008, Crete, 2008.

[16] Kurt Jensen: An Introduction to the Theoretical Aspects of Colored Petri Nets, Lecture
Notes in Computer Science (Springer), 1994.

[17] P. Andreetto et al. Practical approaches to grid workload and resource management in
the egee project. In Proceedings of the Conference for Computing in High-Energy and
Nuclear Physics (CHEP 04), Interlaken, Switzerland, 2004.

[18] W. van der Aalst. The application of Petri Nets to workflow management. The Journal
of Circuits, Systems and Computers, 8(1):21-66, 1998.

[19] W. van der Aalst. Pi calculus versus petri nets: Let us eat humble pie rather than further
inflate the pi hype. unpublished discussion paper, 2003.

[20] BioMoby, http://biomoby.org/

[21] T. Oinn. XScufl Language Reference.
http://www.ebi.ac.uk/ tmo/mygrid/XScuflSpecification.html, 2004.

[22] Condor DAGMan, http://www.cs.wisc.edu/condor/dagman/

[23] Tom Oinn et al.. Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20(17):3045-3054, June 2004.

[24] A. Hoheisel and M. Alt. Petri Nets. In IJ. Taylor, D. Gannon, E. Deelman, and
M.S. Shields, editors, Workflows for e-Science — Scientific Workflows for Grids, Springer,
2006.

