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Abstract

Several years of research are establishing Petri Nets as
a modeling formalism for scientific workflows; their for-
mal semantics and the existence of several analysis tools,
among others, make them suitable for complex concurrent
processes’ description. However, the non-determinism of
the Petri Net model clashes with the imperative Turing-
based environment provided by mainstream programming
languages such as C/C++, Java and C#. Therefore several
design decisions must be taken in order to provide a con-
crete implementation of a Petri Net-based engine.

This paper proposes the architecture of a workflow en-
gine – currently implemented in a Workflow Management
System (WfMS) – with the goal to provide a reliable and
efficient platform for the execution of scientific workflows
in a Grid environment. One of the design principle is the
neutrality towards the underlying mechanisms for task ex-
ecution, in order not to compromise interoperability with
multiple infrastructures.

1. Introduction

Workflows are gaining a lot of interest both in the busi-
ness and scientific environments for automating the exe-
cution of complex IT processes. Workflow programming
model is very appealing for unskilled end users because
it allows to express the business logic behind such pro-
cesses usually in a graph-oriented high-level way, leaving
the management of low level details to a WfMS. Further-
more, composition tools exist in order to aid the workflow
design process, hiding most of the underlying details re-
lated, for example, to the internal representation.

As a consequence, several workflow description lan-
guages, at different levels of complexity, have been de-
fined. These languages are based on different modeling
formalisms such as: Directed Acyclic Graphs (DAGs), π-
Calculus [1], UML Activity Diagrams [2] and Petri Nets.
Unfortunately, the existence of a variety of languages and

formalisms makes interoperability between different plat-
forms very challenging, and consequently penalizes the use
of workflows.

DAGs are often used in the description of simple scien-
tific processes because of their simplicity and the ability to
model the data-flow. Furthermore, DAGs can describe the
control-flow in terms of sequence, parallelism and choice
but not iteration, limiting the expressiveness of such formal-
ism. More powerful than DAGs, the Turing-complete Petri
Nets formalism deals with both the control and data-flow
allowing the description of complex concurrent processes.
Recent studies [3] have demonstrated that the modeling ca-
pabilities of Petri Nets outperform other formalisms mainly
thanks to the following properties [4]: (i) the formal seman-
tics despite the graphical nature, (ii) state-based structure
(as opposed to the event-based one, on which π-Calculus
is based), and (iii) the availability of many analysis tech-
niques.

Lately, many efforts have been done in order to propose a
workflow description language based on the Petri Nets for-
malism. For example, the Grid Workflow Description Lan-
guage (GWorkflowDL) – which has been introduced by the
Fraunhofer FIRST research group – is an XML-based lan-
guage which uses the High Level Petri Nets (HLPN) model-
ing formalism [5] [6]. In the business environment, the Yet
Another Workflow Language (YAWL) has been defined by
extending the Petri Nets formalism with several features in
order to overcome the limitations of Petri Nets in describing
business processes [7].

Although the stated superiority of Petri Nets in workflow
modeling, both in scientific and business environments,
only few workflow enactment engines based on such for-
malism exist, namely GWES and YAWL. In fact the power
of Petri Nets comes at the price of non-trivial implementa-
tions, which have to deal with all the theoretical aspects of
the formal model, first of all non-determinism. Although
avoiding non-determinism in the design of a workflow is a
good practice, this is not always possible and the way the
engine copes with it should not affect the workflow execu-
tion result. As of today, there are no clear guidelines on



how a Petri Net-based workflow engine has to be imple-
mented. In fact, several design choices have to be taken
in order to implement such engine in the Turing-based en-
vironment provided by the common imperative program-
ming languages such as C/C++ and Java. For instance, the
behavioral details of the Grid Workflow Execution Service
(GWES), probably the currently most used implementation,
are available only looking at the source code.

In this paper we present the design of an engine based on
HLPNs. The static architecture and its dynamic behavior
are both described to show how problems related to the ex-
ecution of a Petri Net can be addressed. The engine natively
uses the HLPNs formalism as internal representation mak-
ing it possible to (i) formally represent the workflow state
(and its evolution); and (ii) deal with adaptive and dynamic
workflows which represent one of the main challenges in
the next-generation WfMSs [8]. The goal of this work is
to introduce a reference implementation of an engine usable
in environments where Petri Nets are commonly employed,
such as workflows, simulations and scheduling. As a proof
of concept, the engine has been implemented as part of a
WfMS developed with the purpose to support the execution
of Petri Net-based workflows (written in the GWorkflowDL
language) on the EGEE/gLite Grid middleware [9], which
is deployed on a large and mature infrastructure.

Sect. 2 introduces the UML class diagram that formally
models the mathematical definition of Petri Nets in an Ob-
ject Oriented Programming (OOP) paradigm. In Sect. 3
problems related to the Petri Nets dynamic behavior are
considered by analyzing the selection and firing of transi-
tions and also the sub-workflow execution mechanism. In
Sect. 4 we present some implementation details and how
the interaction with the gLite Grid middleware is made pos-
sible. Sect. 5 presents how this work will progress in the
future.

2. From HLPN to the OOP model

The semantic model of an HLPN can be described in
several ways [10]. An HLPN is normally represented us-
ing a graphical form which allows visualization of system
dynamics (flows of data and control). An HLPN can be de-
fined by the tuple:

HLPN = (P, T, Type, Pre, Post, E,G,M0)

where:

• P is a finite set of elements called Places;

• T is a finite set of elements called Transitions, disjoint
from P (P ∩ T = ∅);

• Type is a function that assigns a type to places and
expressions;
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Figure 1. A Petri Net based workflow

• Pre ⊆ (P × T ) is the subset of arcs from places to
transitions and Post ⊆ (T ×P ) is the set of arcs from
transitions to places;

• E is an arc expression. It is defined from Pre ∪ Post
into expressions. Expressions may comprise constants,
variables (e.g., x, y) and functions (e.g., f(x)) which
are typed;

• G is the Guard function, a boolean expression inscrib-
ing a transition t ∈ T (where Type(G(t)) = boolean);

• M0 is the initial marking: a multiset of tokens associ-
ated with the places.

According to the mathematical representation, transi-
tions are atomic operations that, when fired, consume to-
kens from the input places and put tokens – according to
edge expressions – into the output places. Considering the
workflows application domain, an edge expression is often
represented by a task execution, which generally can fail.
Therefore, when multiple expressions are associated with a
transition it is difficult to guarantee the atomicity of their
execution (either each expression terminates successfully
or no expression executes). When expressions have side
effects, the overall workflow state could be easily compro-
mised.

In order to avoid edge expressions and, consequently,
make failure management easier, the HLPN model has been
simplified: only variables can be associated with edges and
expressions are moved into transitions. This simplification
does not limit the expressiveness of the HLPN model; in
fact it is simple to prove that an edge expression can al-
ways be replaced by a transition which performs the same
operation. However, this approach can lead to an increase
in the number of transitions in the workflow description, a
problem which is mitigated by the sub-Petri Net execution
mechanism shown in Sect. 4.



According to the changes done to the formal HLPN
model, a Petri Net-based workflow can be represented as
depicted in Fig. 1. Each place is marked with a type (using
a parametric programming syntax style). Edges are iden-
tified by variables, where a variable type must be compat-
ible with the input (if the edge e ∈ P × T ) or output (if
edge e ∈ T × P ) place. Also tokens have a type: in Fig. 1
gray tokens are of Integer type and the black token is
of String type. The boolean transition condition (the
Guard) is defined in square brackets. Expressions are asso-
ciated with transitions. In the general case, expressions can
have several return values, compatible with the number and
type of the variables associated with the output edges of the
transition. However, in this implementation we consider the
common situation where the output edges of a transition are
labeled with variables which are either defined in the incom-
ing edges or in the expression. For example, the b variable
in Fig. 1 is used to copy the token consumed from place p1

into the output place p4; while the c variable, which is de-
fined in the transition expression, is used to store the result
of the computation performed during the transition firing.

The simplified HLPN model can be easily represented in
a OOP language as depicted in the class diagram in Fig. 2.
According to the theory, places, tokens and variables have
a type; in order to keep type constrains in the OOP model,
parametric programming – which is available in most of
mainstream programming languages (C++, Java and C#) –
is used. Variables, modeled by the Var class, are associ-
ated with edges. Operations and conditions, associated with
transitions, are implemented using the Function class.
The Function and Var classes represent the basic con-
cepts of the model. The Function class allows to express
the static relationships between a transition operation (or
condition) and the transition input and output places (iden-
tified by edge variables). A Function<T,P1,...,PN>
instance is a placeholder for the invocation of a procedure
– whose signature is in the form T f(P1 p1,...,PN
pn) – whose arguments p1,...,pn are the values of
the tokens that, at runtime, trigger the transition. Ac-
cording to the model simplification, operations can have
only one return value; however this is not a limitation
as far as multiple return values can be provided using a
Tuple<R1,...,RN> object as return type.

However, the number and type of the parameters asso-
ciated with an operation is unknown until runtime, when
the workflow description is provided. For statically-typed
languages, such as C++, a number of specializations of
Function has to be provided, up to a reasonable limit.
The limitation does not exist for dynamically-typed lan-
guages, such as Python, which, as depicted in Sect. 4, can be
embedded into the engine to support function invocations.

Figure 2. Class diagram of a Petri Net OOP
model

3. Petri Net dynamics

The main goal of the proposed Petri Net-based engine is
to obtain an high parallelism in executing transitions, assur-
ing state consistency and keeping the overall design simple.
The dynamic behavior of the engine is herein described us-
ing a finite state machine. When the Petri Net is loaded
into the engine the initial marking M0 is established; Fig. 3
depicts a Petri Net in its initial state M0. At time t0 the
engine’s main loop starts. Execution continues by select-
ing the enabled transitions (T1 and T2) and by firing one
of them (where the choice of the transition to fire is non-
deterministic). As firing a transition always results in a new
state or marking, the evolution of the net can thus be repre-
sented by a sequence of states M0,M1, . . . ,Mn where M0

represents the initial marking and Mn the final one, where
no further transitions are enabled.

3.1. Non-Determinism of Petri Nets

Non-determinism implies the existence of several ways
according to which the net can evolve. The reachability
graph – the directed graph whose points represent states
(i.e. Mi), and arcs represent transitions between two states
– is used to represent all the possible state evolutions of the
net. The graph can be built starting from the structure of the
Petri Net in its initial markingM0. As explained in [11], the
reachability graph is important to detect some fundamental
dynamic properties of a Petri Net, such as boundness and
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Figure 3. A Petri Net workflow with conflicting
transitions where M0 = {{3, 0}, {3}, {}, {}}

liveness; i.e. the presence of a finite number of states and
the absence of deadlocks respectively.

In the example in Fig. 3, transitions T1 and T2 are both
enabled at time t0 by the tokens with value 3 placed in p1

and p2; they are equally probable, but conflicting (i.e. mu-
tually exclusive). Our engine implementation emulates the
non-determinism simply by selecting one of the possible
transitions randomly. In other words, for every step if more
than one transition is enabled at time ti, a random choice is
made and the corresponding transition is triggered. At time
ti+1, when a new marking is established, new transitions
can be enabled while previously enabled transitions can turn
into a disabled state (when conflicts arise with previous en-
abled ones). This process is then iterated until no further
transitions are enabled. The random approach works also in
such situations, i.e. dynamic workflows, where a Petri Net
model can change during the execution and no (a-priori)
planning can be performed.

Alternatively, conflict resolution can be better addressed
via the reachability graph. Given Mi (the state of the net
at time ti), the next marking Mi+1 can be chosen consider-
ing heuristics based on the graph. Unfortunately, generally
the analysis of a Petri Net takes at least exponential time
and space becoming a burden for the engine performance.
More details about scheduling techniques in Petri Nets can
be found in [12].

3.2. Transition Parallelism

Firing of a single transition for each step limits the
parallelism of the engine, as non conflicting transitions
– which could be executed in parallel – are always trig-
gered in sequence. This design choice leads to a single-
threaded engine which can however still increases its transi-
tion throughput via a proper firing mechanism. Three main
phases can be distinguished in transition firing as depicted

p1 p2T1

x y

y = f(x)

1*

2* 2*

3*

Figure 4. Phases of transition firing

in Fig. 4.

• Phase 1*: tokens are moved from the input places (p1)
and bound to the input variables (x) of the chosen tran-
sition (T1).

• Phase 2*: the transition is fired: the associated opera-
tion (f(. . .)) is performed using the token values stored
into the input variables (x) and the corresponding re-
sult is stored in the output variables (y).

• Phase 3*: output tokens are moved from output vari-
ables (y) to the respective output places (p2) of the
transition.

In order to preserve state consistency all the 1* and 3*
phases need to be executed in a mutually exclusive way.
The execution of such phases is nevertheless negligible if
compared to the Phase 2* which, in the workflows applica-
tion domain, usually consists in the interaction with remote
services (e.g. a Web Service). As far as Phase 2* does not
interact with the Petri Net state, high parallelism (ideally
infinite) is obtained by executing transition operations on
separate threads.

3.3. Engine State Chart

The engine behavior is described by the State Chart di-
agram in Fig. 5. When in the Fire state, the engine (i)
checks for enabled transitions and selects one of them; (ii)
performs Phase 1* by consuming tokens from the input
places, and (iii) finally demands the execution of the tran-
sition operation (Phase 2*) to a thread (t). If multiple en-
abled transitions are present, the event EvFired – which
keeps the engine in the Fire state – is triggered. Other-
wise, the EvWait event – which moves the engine to the
Wait state – is fired. This makes the engine waits for the
EvEndTransition event, which is generated when one
of the transitions currently in execution on separate threads
terminates. The EvEndTransition event makes the en-
gine move to the Fire state looking for new enabled tran-
sitions to trigger. When all pending operations and enabled
transitions are processed, the engine returns in the Idle
state by firing the EvEnd event.



Figure 5. State chart of a Petri Net-based en-
gine

As stated in the previous section, in workflows, opera-
tions can fail. Several strategies can be considered in order
to handle this situation. For instance, in scientific work-
flows, operations are usually idempotent, and the common
failure recovery strategy, used by many WfMSs, consists of
the re-execution of the tasks. In the current implementa-
tion of the proposed engine, if a transition – which makes
the marking to evolve from Mi to Mi+1 – fails, the mark-
ing Mi is re-established and the EvFired event triggered.
Although this strategy works fine with idempotent tasks, it
cannot be considered a general purpose solution. Generally,
a common strategy cannot be hard-coded as it depends on
the specific context in which the workflow operates. A bet-
ter solution to the problem is proposed in [13], where the
failure management is implemented at higher level by the
workflow model itself.

3.4. Sub-Petri Nets

Besides regular transitions our engine also implements
an experimental support for the execution of a sub-Petri Net
(also called sub-workflow). In practice, a Petri Net can be
embedded in a transition and when this is fired the associ-
ated sub-Petri Net is executed. An example is depicted in
Fig. 6, where the sub-Petri Net sw is associated with the
transition T1. This implies that when the transition is fired,
a new engine is initialized with the sub-workflow definition
and the sub-Petri Net is executed.

As for regular transitions, some considerations have to
be made in order to guarantee the state consistency. A sub-
workflow can be seen as a component which exposes an
interface composed by a set of input/output places (respec-
tively sp1 and sp3 in Fig. 6). Beyond the interface’s places,
a sub-workflow can contain an undefined number of inter-
nal places (ip2) and transitions. The execution of a sub-
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Figure 6. Sub-Petri Net execution example

workflow associated with a transition T is done by copying
the tokens in the incoming places of T to the input places of
the sub-workflow (Phases 1* and 1*’ depicted in the Fig. 6).
Once the sub-Petri Net initial marking is established, the
sub-workflow is executed by a different instance of the en-
gine, running typically on a separate thread. When the sub-
workflow reaches its final state, each sub-workflow’s output
place must be filled with tokens which are moved to the out-
put places of T (Phases 3*’ and 3*).

4. Prototype Implementation

The implementation of the engine is done mainly in
the C++ language, because of its strong type checking,
expressivity and availability of libraries. The C++ lan-
guage capabilities have been extended by using several li-
braries provided by the Boost project [15]. For example,
the Boost.Graph library to internally represent the Petri Net
structure, the Boost.Statechart library to implement the en-
gine behavior and the Boost.Python library to embed the
Python language interpreter into the engine. As stated in
Sect. 2, the Python scripting language has been used in or-
der to simplify the dynamic translation of a GWorkflowDL-
based workflow description into the internal Petri Net rep-
resentation. In particular, expressions – provided as strings
– which can have any number (and type) of parameters are
managed by using the Python scripting language. The use
of a scripting language allows to provide new functionali-
ties to the engine in a dynamic way. Its customization can be
done simply by supplying additional Python modules which
can be loaded at run-time without any change to the engine
core.

The GWorkflowDL is the reference description language
used by the engine. Some extensions have been proposed to
(i) allow the use of the Python language to specify transi-
tions conditions and operations as well; and also to (ii) sup-



port the sub-workflows’ invocation. However, one of the
main goals of the WfMS is to provide interoperability be-
tween different workflow languages; as a proof of concept,
the current implementation also supports the Job Descrip-
tion Language (JDL) commonly used for describing jobs,
including DAG-based workflows, in the gLite middleware.
A DAG can be easily represented in term of a Petri Nets by
means of a language translator [9].

In order to evaluate the capabilities of the engine, tests
have done with workflows accessing resources available on
the Grid provided by the EGEE project, a large and rel-
atively mature infrastructure. In particular, the execution
of Grid jobs is performed by relying on the gLite Work-
load Management System (WMS) [14] through its Web Ser-
vice interface (WMProxy). The WMS takes care of the
resource management in gLite by finding the best avail-
able resources considering a set of users requirements and
preferences (such as CPU architecture, OS, current load).
The planning of a task is done just-in-time without advance
reservation of the resources.

By design, the workflow engine has no knowledge at all
of the gLite middleware and the WMS. It can only execute
atomic operations – i.e. the invocation of a web service or
the local execution of a Python script – which are associated
with the Petri Net transitions. Fortunally, complex tasks,
such as Grid operations, can be expressed by composing
atomic operations into sub-workflows. The mapping from
high-level Grid operations to concrete (Petri Net-based) de-
scriptions the engine can understand and execute is done
by a refinement process performed by the WfMS. Further-
more, the resolution of such abstract operations strictly de-
pends on the target Grid middleware, and thanks to the sub-
workflow execution mechanism, the support for new infras-
tructures can be easily provided even at runtime.

5. Conclusions and Future Work

Petri Nets represent a valid workflow modeling formal-
ism matching the evolution of Grid computing towards a
service-oriented architecture. The ability to formally de-
scribe both the control and the data flow makes Petri Nets
ideal for the description of scientific processes. However,
just a few Petri Net-based WfMSs exist nowadays, i.e.
GWES and YAWL. Furthermore, the lack of information
on their implementation details makes their customization
very difficult.

In this paper, the design of a Petri Net-based engine
has been introduced with the goal to provide a reliable,
extensible, efficient and open source platform for realistic
workflows. Unfortunately, the project is under development
stage and no concrete results about the execution of real sci-
entific workflows can be provided at the moment.

For the future we will focus on: (i) porting existing ap-

plications (e.g. the prokaryotic genomes comparison [16])
to our platform; (ii) the integration of existing Grid infras-
tructure (e.g. UNICORE) and (iii) improving the GWork-
flowDL description language to make it more expressive
and compliant to the needs of scientific applications.
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